預(yù)定義常量

下列常量由此擴(kuò)展定義,且僅在此擴(kuò)展編譯入 PHP 或在運(yùn)行時動態(tài)載入時可用。

訓(xùn)練算法
FANN_TRAIN_INCREMENTAL (integer)
標(biāo)準(zhǔn)反向傳播算法,每次訓(xùn)練匹配后權(quán)重都會更新。這意味著在每個單歷元中權(quán)重會被更新很多次。因?yàn)檫@個原因,很多問題使用這個算法將會訓(xùn)練的非??欤欢渌呒壍膯栴}的訓(xùn)練效果不是很好。
FANN_TRAIN_BATCH (integer)
標(biāo)準(zhǔn)反向傳播算法,計(jì)算均方差誤差后權(quán)重值將會更新。 這意味著每個單歷元只會更新一次。因?yàn)檫@個原因,很多問題使用這個算法會訓(xùn)練的很慢。但是計(jì)算出的均方差誤差比增量訓(xùn)練的效果更好,使用這個算法某些問題將會得到更好的解決方案。
FANN_TRAIN_RPROP (integer)
一個更高級的批訓(xùn)練算法,對于很多問題該算法還會獲得很好的結(jié)果。RPROP 訓(xùn)練算法是自適應(yīng)的,因此不需要使用 learning_rate. 其他一些參數(shù)用來設(shè)置 RPROP 算法工作的方式,只推薦給那些知道 RPROP 算法如何工作的人來設(shè)置。RPROP 訓(xùn)練算法是被 Riedmiller 和 BraunSome 在1993年提出來的,實(shí)際上此處使用的是由 Igel 和 Husken 在2000年提出來的 iRPROP 訓(xùn)練算法,它是標(biāo)準(zhǔn) RPROP 訓(xùn)練算法的一個變種。
FANN_TRAIN_QUICKPROP (integer)
一個更高級的批訓(xùn)練算法,對于很多問題該算法還會獲得很好的結(jié)果。quickprop 訓(xùn)練算法使用 learning_rate 參數(shù)和其他更高級的參數(shù), 但是只有當(dāng)用戶真正明白 quickprop 訓(xùn)練算法如何工作的時候才建議修改這些高級參數(shù)。 quickprop 訓(xùn)練算法是被 Fahlman 在1988年描述的。
FANN_TRAIN_SARPROP (integer)
更高級的訓(xùn)練算法,只在2.2版本中可用。
Activation functions
FANN_LINEAR (integer)
線性激勵函數(shù)。
FANN_THRESHOLD (integer)
閾值激勵函數(shù)。
FANN_THRESHOLD_SYMMETRIC (integer)
閾值激勵函數(shù)。
FANN_SIGMOID (integer)
Sigmoid激勵函數(shù)。
FANN_SIGMOID_STEPWISE (integer)
逐步線性逼近 Sigmoid 激勵函數(shù)。
FANN_SIGMOID_SYMMETRIC (integer)
對稱 Sigmoid 激勵函數(shù), 又名:tanh.
FANN_SIGMOID_SYMMETRIC_STEPWISE (integer)
逐步線性逼近對稱 Sigmoid 激勵函數(shù)。
FANN_GAUSSIAN (integer)
Gaussian (高斯) 激勵函數(shù)。
FANN_GAUSSIAN_SYMMETRIC (integer)
對稱 gaussian (高斯)激勵函數(shù)。
FANN_GAUSSIAN_STEPWISE (integer)
逐步 gaussian (高斯)激勵函數(shù)。
FANN_ELLIOT (integer)
快速(類sigmoid)激勵函數(shù),由 David Elliott 定義的。
FANN_ELLIOT_SYMMETRIC (integer)
快速(類對稱sigmoid)激勵函數(shù),由 David Elliott定義的。
FANN_LINEAR_PIECE (integer)
有界線性激勵函數(shù)。
FANN_LINEAR_PIECE_SYMMETRIC (integer)
有界線性激勵函數(shù)。
FANN_SIN_SYMMETRIC (integer)
周期sin(正弦)激勵函數(shù)。
FANN_COS_SYMMETRIC (integer)
周期cos(余弦)激勵函數(shù)。
FANN_SIN (integer)
周期sin(正弦)激勵函數(shù)。
FANN_COS (integer)
周期cos(余弦)激勵函數(shù)。
Error function used during training
FANN_ERRORFUNC_LINEAR (integer)
標(biāo)準(zhǔn)線性誤差函數(shù)。
FANN_ERRORFUNC_TANH (integer)
Tanh 誤差函數(shù), 通常更好但是要求更低的學(xué)習(xí)率。該誤差函數(shù)當(dāng)有目標(biāo)輸出時將會和期望值有很大的不同,然而沒有目標(biāo)輸出時只有很小不同。此激勵函數(shù)在層疊訓(xùn)練和增量訓(xùn)練。
Stop criteria used during training
FANN_STOPFUNC_MSE (integer)
停止準(zhǔn)則是均方誤差(MSE)值。
FANN_STOPFUNC_BIT (integer)
停止準(zhǔn)則是失敗時的比特位數(shù)。比特位數(shù)意味著輸出神經(jīng)元的個數(shù)超過了失敗時的比特位數(shù) (參考 fann_get_bit_fail_limit, fann_set_bit_fail_limit). 位數(shù)在所有的訓(xùn)練數(shù)據(jù)中都會被計(jì)數(shù),所以這個數(shù)組將會比訓(xùn)練數(shù)據(jù)的數(shù)量更高。
fann_get_network_type() 是用來定義網(wǎng)絡(luò)類型
FANN_NETTYPE_LAYER (integer)
每一層只能連接下一層。
FANN_NETTYPE_SHORTCUT (integer)
每一層與所有以下層有連接。
Errors
FANN_E_NO_ERROR (integer)
無誤差。
FANN_E_CANT_OPEN_CONFIG_R (integer)
無法打開讀取配置文件。
FANN_E_CANT_OPEN_CONFIG_W (integer)
無法打開寫入配置文件。
FANN_E_WRONG_CONFIG_VERSION (integer)
配置文件的錯誤版本。
FANN_E_CANT_READ_CONFIG (integer)
從配置文件讀取信息的錯誤。
FANN_E_CANT_READ_NEURON (integer)
從配置文件讀取神經(jīng)元信息的錯誤。
FANN_E_CANT_READ_CONNECTIONS (integer)
從配置文件讀取連接的錯誤。
FANN_E_WRONG_NUM_CONNECTIONS (integer)
連接數(shù)和期望的值不相等。
FANN_E_CANT_OPEN_TD_W (integer)
無法打開訓(xùn)練數(shù)據(jù)文件寫入內(nèi)容。
FANN_E_CANT_OPEN_TD_R (integer)
無法打開訓(xùn)練數(shù)據(jù)文件讀取內(nèi)容。
FANN_E_CANT_READ_TD (integer)
從文件讀取訓(xùn)練數(shù)據(jù)錯誤。
FANN_E_CANT_ALLOCATE_MEM (integer)
無法分配內(nèi)存。
FANN_E_CANT_TRAIN_ACTIVATION (integer)
無法使用已選的激勵函數(shù)訓(xùn)練。
FANN_E_CANT_USE_ACTIVATION (integer)
無法使用已選的激勵函數(shù)。
FANN_E_TRAIN_DATA_MISMATCH (integer)
兩個 fann_train_data 結(jié)構(gòu)體之間存在不可調(diào)和的差異。
FANN_E_CANT_USE_TRAIN_ALG (integer)
不能使用已選的訓(xùn)練算法。
FANN_E_TRAIN_DATA_SUBSET (integer)
嘗試獲取不在訓(xùn)練集內(nèi)的子集。
FANN_E_INDEX_OUT_OF_BOUND (integer)
索引超出了界限。
FANN_E_SCALE_NOT_PRESENT (integer)
標(biāo)定參數(shù)不存在。
FANN_E_INPUT_NO_MATCH (integer)
在人工神經(jīng)網(wǎng)絡(luò)和數(shù)據(jù)中的輸入神經(jīng)元個數(shù)不匹配。
FANN_E_OUTPUT_NO_MATCH (integer)
在人工神經(jīng)網(wǎng)絡(luò)和數(shù)據(jù)中的輸出神經(jīng)元個數(shù)不匹配。