概述?
Python 的應(yīng)用編程接口(API)使得 C 和 C++ 程序員可以在多個(gè)層級上訪問 Python 解釋器。該 API 在 C++ 中同樣可用,但為簡化描述,通常將其稱為 Python/C API。使用 Python/C API 有兩個(gè)基本的理由。第一個(gè)理由是為了特定目的而編寫 擴(kuò)展模塊;它們是擴(kuò)展 Python 解釋器功能的 C 模塊。這可能是最常見的使用場景。第二個(gè)理由是將 Python 用作更大規(guī)模應(yīng)用的組件;這種技巧通常被稱為在一個(gè)應(yīng)用中 embedding Python。
編寫擴(kuò)展模塊的過程相對來說更易于理解,可以通過“菜譜”的形式分步驟介紹。使用某些工具可在一定程度上自動化這一過程。雖然人們在其他應(yīng)用中嵌入 Python 的做法早已有之,但嵌入 Python 的過程沒有編寫擴(kuò)展模塊那樣方便直觀。
許多 API 函數(shù)在你嵌入或是擴(kuò)展 Python 這兩種場景下都能發(fā)揮作用;此外,大多數(shù)嵌入 Python 的應(yīng)用程序也需要提供自定義擴(kuò)展,因此在嘗試在實(shí)際應(yīng)用中嵌入 Python 之前先熟悉編寫擴(kuò)展應(yīng)該會是個(gè)好主意。
代碼標(biāo)準(zhǔn)?
如果你想要編寫可包含于 CPython 的 C 代碼,你 必須 遵循在 PEP 7 中定義的指導(dǎo)原則和標(biāo)準(zhǔn)。這些指導(dǎo)原則適用于任何你所要擴(kuò)展的 Python 版本。在編寫你自己的第三方擴(kuò)展模塊時(shí)可以不必遵循這些規(guī)范,除非你準(zhǔn)備在日后向 Python 貢獻(xiàn)這些模塊。
包含文件?
使用 Python/C API 所需要的全部函數(shù)、類型和宏定義可通過下面這行語句包含到你的代碼之中:
#define PY_SSIZE_T_CLEAN
#include <Python.h>
這意味著包含以下標(biāo)準(zhǔn)頭文件:<stdio.h>
,<string.h>
,<errno.h>
,<limits.h>
,<assert.h>
和 <stdlib.h>
(如果可用)。
備注
由于 Python 可能會定義一些能在某些系統(tǒng)上影響標(biāo)準(zhǔn)頭文件的預(yù)處理器定義,因此在包含任何標(biāo)準(zhǔn)頭文件之前,你 必須 先包含 Python.h
。
推薦總是在 Python.h
前定義 PY_SSIZE_T_CLEAN
。查看 解析參數(shù)并構(gòu)建值變量 來了解這個(gè)宏的更多內(nèi)容。
Python.h 所定義的全部用戶可見名稱(由包含的標(biāo)準(zhǔn)頭文件所定義的除外)都帶有前綴 Py
或者 _Py
。以 _Py
打頭的名稱是供 Python 實(shí)現(xiàn)內(nèi)部使用的,不應(yīng)被擴(kuò)展編寫者使用。結(jié)構(gòu)成員名稱沒有保留前綴。
備注
用戶代碼永遠(yuǎn)不應(yīng)該定義以 Py
或 _Py
開頭的名稱。這會使讀者感到困惑,并危及用戶代碼對未來Python版本的可移植性,這些版本可能會定義以這些前綴之一開頭的其他名稱。
頭文件通常會與 Python 一起安裝。在 Unix 上,它們位于以下目錄:prefix/include/pythonversion/
和 exec_prefix/include/pythonversion/
,其中 prefix
和 exec_prefix
是由向 Python 的 configure 腳本傳入的對應(yīng)形參所定義,而 version 則為 '%d.%d' % sys.version_info[:2]
。在 Windows 上,頭文件安裝于 prefix/include
,其中 prefix
是向安裝程序指定的安裝目錄。
要包含頭文件,請將兩個(gè)目錄(如果不同)都放到你所用編譯器的包含搜索路徑中。請 不要 將父目錄放入搜索路徑然后使用 #include <pythonX.Y/Python.h>
;這將使得多平臺編譯不可用,因?yàn)?prefix
下平臺無關(guān)的頭文件需要包含來自 exec_prefix
下特定平臺的頭文件。
C++ 用戶應(yīng)該注意,盡管 API 是完全使用 C 來定義的,但頭文件正確地將入口點(diǎn)聲明為 extern "C"
,因此 API 在 C++ 中使用此 API 不必再做任何特殊處理。
有用的宏?
Python 頭文件中定義了一些有用的宏。許多是在靠近它們被使用的地方定義的(例如 Py_RETURN_NONE
)。其他更為通用的則定義在這里。這里所顯示的并不是一個(gè)完整的列表。
-
Py_ABS(x)?
返回
x
的絕對值。3.3 新版功能.
-
Py_ALWAYS_INLINE?
Ask the compiler to always inline a static inline function. The compiler can ignore it and decides to not inline the function.
It can be used to inline performance critical static inline functions when building Python in debug mode with function inlining disabled. For example, MSC disables function inlining when building in debug mode.
Marking blindly a static inline function with Py_ALWAYS_INLINE can result in worse performances (due to increased code size for example). The compiler is usually smarter than the developer for the cost/benefit analysis.
If Python is built in debug mode (if the
Py_DEBUG
macro is defined), thePy_ALWAYS_INLINE
macro does nothing.It must be specified before the function return type. Usage:
static inline Py_ALWAYS_INLINE int random(void) { return 4; }
3.11 新版功能.
-
Py_CHARMASK(c)?
參數(shù)必須為 [-128, 127] 或 [0, 255] 范圍內(nèi)的字符或整數(shù)類型。這個(gè)宏將
c
強(qiáng)制轉(zhuǎn)換為unsigned char
返回。
-
Py_DEPRECATED(version)?
棄用聲明。該宏必須放置在符號名稱前。
示例:
Py_DEPRECATED(3.8) PyAPI_FUNC(int) Py_OldFunction(void);
在 3.8 版更改: 添加了 MSVC 支持。
-
Py_MAX(x, y)?
返回
x
和y
當(dāng)中的最大值。3.3 新版功能.
-
Py_MEMBER_SIZE(type, member)?
返回結(jié)構(gòu) (
type
)member
的大小,以字節(jié)表示。3.6 新版功能.
-
Py_MIN(x, y)?
返回
x
和y
當(dāng)中的最小值。3.3 新版功能.
-
Py_NO_INLINE?
Disable inlining on a function. For example, it reduces the C stack consumption: useful on LTO+PGO builds which heavily inline code (see bpo-33720).
Usage:
Py_NO_INLINE static int random(void) { return 4; }
3.11 新版功能.
-
Py_STRINGIFY(x)?
將
x
轉(zhuǎn)換為 C 字符串。例如Py_STRINGIFY(123)
返回"123"
。3.4 新版功能.
-
Py_UNREACHABLE()?
這個(gè)可以在你有一個(gè)設(shè)計(jì)上無法到達(dá)的代碼路徑時(shí)使用。例如,當(dāng)一個(gè)
switch
語句中所有可能的值都已被case
子句覆蓋了,就可將其用在default:
子句中。當(dāng)你非常想在某個(gè)位置放一個(gè)assert(0)
或abort()
調(diào)用時(shí)也可以用這個(gè)。在 release 模式下,該宏幫助編譯器優(yōu)化代碼,并避免發(fā)出不可到達(dá)代碼的警告。例如,在 GCC 的 release 模式下,該宏使用
__builtin_unreachable()
實(shí)現(xiàn)。Py_UNREACHABLE()
的一個(gè)用法是調(diào)用一個(gè)不會返回,但卻沒有聲明_Py_NO_RETURN
的函數(shù)之后。如果一個(gè)代碼路徑不太可能是正常代碼,但在特殊情況下可以到達(dá),就不能使用該宏。例如,在低內(nèi)存條件下,或者一個(gè)系統(tǒng)調(diào)用返回超出預(yù)期范圍值,諸如此類,最好將錯誤報(bào)告給調(diào)用者。如果無法將錯誤報(bào)告給調(diào)用者,可以使用
Py_FatalError()
。3.7 新版功能.
-
Py_UNUSED(arg)?
用于函數(shù)定義中未使用的參數(shù),從而消除編譯器警告。例如:
int func(int a, int Py_UNUSED(b)) { return a; }
。3.4 新版功能.
-
PyDoc_STRVAR(name, str)?
創(chuàng)建一個(gè)可以在文檔字符串中使用的,名字為
name
的變量。如果不和文檔字符串一起構(gòu)建 Python,該值將為空。如 PEP 7 所述,使用
PyDoc_STRVAR
作為文檔字符串,以支持不和文檔字符串一起構(gòu)建 Python 的情況。示例:
PyDoc_STRVAR(pop_doc, "Remove and return the rightmost element."); static PyMethodDef deque_methods[] = { // ... {"pop", (PyCFunction)deque_pop, METH_NOARGS, pop_doc}, // ... }
-
PyDoc_STR(str)?
為給定的字符串輸入創(chuàng)建一個(gè)文檔字符串,或者當(dāng)文檔字符串被禁用時(shí),創(chuàng)建一個(gè)空字符串。
如 PEP 7 所述,使用
PyDoc_STR
指定文檔字符串,以支持不和文檔字符串一起構(gòu)建 Python 的情況。示例:
static PyMethodDef pysqlite_row_methods[] = { {"keys", (PyCFunction)pysqlite_row_keys, METH_NOARGS, PyDoc_STR("Returns the keys of the row.")}, {NULL, NULL} };
對象、類型和引用計(jì)數(shù)?
多數(shù) Python/C API 有一個(gè)或多個(gè)參數(shù),以及一個(gè) PyObject* 類型的返回值。這種類型是指向任意 Python 對象的不透明數(shù)據(jù)類型的指針。所有 Python 對象類型在大多數(shù)情況下都被 Python 語言由相同的方式處理(例如,賦值,作用域規(guī)則,和參數(shù)傳遞),因此將它們由單個(gè) C 類型表示才合適。幾乎所有 Python 對象存放在堆中:你不能聲明一個(gè)類型為 PyObject
的自動或靜態(tài)的變量,只能聲明類型為 PyObject* 的指針。type 對象是唯一的例外,因?yàn)樗鼈冇肋h(yuǎn)不能被釋放,所以它們通常是靜態(tài)的 PyTypeObject
對象。
所有 Python 對象(甚至 Python 整數(shù))都有一個(gè) type 和一個(gè) reference count。對象的類型確定它是什么類型的對象(例如整數(shù)、列表或用戶定義函數(shù);還有更多,如 標(biāo)準(zhǔn)類型層級結(jié)構(gòu) 中所述)。對于每個(gè)眾所周知的類型,都有一個(gè)宏來檢查對象是否屬于該類型;例如,當(dāng)(且僅當(dāng)) a 所指的對象是 Python 列表時(shí) PyList_Check(a)
為真。
引用計(jì)數(shù)?
引用計(jì)數(shù)非常重要,因?yàn)楝F(xiàn)代計(jì)算機(jī)內(nèi)存(通常十分)有限;它計(jì)算有多少不同的地方引用同一個(gè)對象。這樣的地方可以是某個(gè)對象,或者是某個(gè)全局(或靜態(tài))C 變量,亦或是某個(gè) C 函數(shù)的局部變量。當(dāng)一個(gè)對象的引用計(jì)數(shù)變?yōu)?0,釋放該對象。如果這個(gè)已釋放的對象包含其它對象的引用計(jì)數(shù),則遞減這些對象的引用計(jì)數(shù)。如果這些對象的引用計(jì)數(shù)減少為零,則可以依次釋放這些對象,依此類推。(這里有一個(gè)很明顯的問題——對象之間相互引用;目前,解決方案是“不要那樣做”。)
總是顯式操作引用計(jì)數(shù)。通常的方法是使用宏 Py_INCREF()
來增加一個(gè)對象的引用計(jì)數(shù),使用宏 Py_DECREF()
來減少一個(gè)對象的引用計(jì)數(shù)。宏 Py_DECREF()
必須檢查引用計(jì)數(shù)是否為零,然后調(diào)用對象的釋放器, 因此它比 incref 宏復(fù)雜得多。釋放器是一個(gè)包含在對象類型結(jié)構(gòu)中的函數(shù)指針。如果對象是復(fù)合對象類型(例如列表),則類型特定的釋放器負(fù)責(zé)遞減包含在對象中的其他對象的引用計(jì)數(shù),并執(zhí)行所需的終結(jié)。引用計(jì)數(shù)不會溢出,至少用與虛擬內(nèi)存中不同內(nèi)存位置一樣多的位用于保存引用計(jì)數(shù)(即 sizeof(Py_ssize_t) >= sizeof(void*)
)。因此,引用計(jì)數(shù)遞增是一個(gè)簡單的操作。
沒有必要為每個(gè)包含指向?qū)ο蟮闹羔樀木植孔兞吭黾訉ο蟮囊糜?jì)數(shù)。理論上,當(dāng)變量指向?qū)ο髸r(shí),對象的引用計(jì)數(shù)增加 1 ,當(dāng)變量超出范圍時(shí),對象的引用計(jì)數(shù)減少 1 。但是,這兩者相互抵消,所以最后引用計(jì)數(shù)沒有改變。使用引用計(jì)數(shù)的唯一真正原因是只要我們的變量指向它,就可以防止對象被釋放。如果知道至少有一個(gè)對該對象的其他引用存活時(shí)間至少和我們的變量一樣長,則沒必要臨時(shí)增加引用計(jì)數(shù)。一個(gè)典型的情形是,對象作為參數(shù)從 Python 中傳遞給被調(diào)用的擴(kuò)展模塊中的 C 函數(shù)時(shí),調(diào)用機(jī)制會保證在調(diào)用期間持有對所有參數(shù)的引用。
但是,有一個(gè)常見的陷阱是從列表中提取一個(gè)對象,并將其持有一段時(shí)間,而不增加其引用計(jì)數(shù)。某些操作可能會從列表中刪除某個(gè)對象,減少其引用計(jì)數(shù),并有可能重新分配這個(gè)對象。真正的危險(xiǎn)是,這個(gè)看似無害的操作可能會調(diào)用任意 Python 代碼——也許有一個(gè)代碼路徑允許控制流從 Py_DECREF()
回到用戶,因此在復(fù)合對象上的操作都存在潛在的風(fēng)險(xiǎn)。
一個(gè)安全的方式是始終使用泛型操作(名稱以 PyObject_
, PyNumber_
, PySequence_
或 PyMapping_
開頭的函數(shù))。這些操作總是增加它們返回的對象的引用計(jì)數(shù)。這讓調(diào)用者有責(zé)任在獲得結(jié)果后調(diào)用 Py_DECREF()
。習(xí)慣這種方式很簡單。
引用計(jì)數(shù)細(xì)節(jié)?
The reference count behavior of functions in the Python/C API is best explained
in terms of ownership of references. Ownership pertains to references, never
to objects (objects are not owned: they are always shared). "Owning a
reference" means being responsible for calling Py_DECREF on it when the
reference is no longer needed. Ownership can also be transferred, meaning that
the code that receives ownership of the reference then becomes responsible for
eventually decref'ing it by calling Py_DECREF()
or Py_XDECREF()
when it's no longer needed---or passing on this responsibility (usually to its
caller). When a function passes ownership of a reference on to its caller, the
caller is said to receive a new reference. When no ownership is transferred,
the caller is said to borrow the reference. Nothing needs to be done for a
borrowed reference.
Conversely, when a calling function passes in a reference to an object, there are two possibilities: the function steals a reference to the object, or it does not. Stealing a reference means that when you pass a reference to a function, that function assumes that it now owns that reference, and you are not responsible for it any longer.
Few functions steal references; the two notable exceptions are
PyList_SetItem()
and PyTuple_SetItem()
, which steal a reference
to the item (but not to the tuple or list into which the item is put!). These
functions were designed to steal a reference because of a common idiom for
populating a tuple or list with newly created objects; for example, the code to
create the tuple (1, 2, "three")
could look like this (forgetting about
error handling for the moment; a better way to code this is shown below):
PyObject *t;
t = PyTuple_New(3);
PyTuple_SetItem(t, 0, PyLong_FromLong(1L));
PyTuple_SetItem(t, 1, PyLong_FromLong(2L));
PyTuple_SetItem(t, 2, PyUnicode_FromString("three"));
Here, PyLong_FromLong()
returns a new reference which is immediately
stolen by PyTuple_SetItem()
. When you want to keep using an object
although the reference to it will be stolen, use Py_INCREF()
to grab
another reference before calling the reference-stealing function.
Incidentally, PyTuple_SetItem()
is the only way to set tuple items;
PySequence_SetItem()
and PyObject_SetItem()
refuse to do this
since tuples are an immutable data type. You should only use
PyTuple_SetItem()
for tuples that you are creating yourself.
Equivalent code for populating a list can be written using PyList_New()
and PyList_SetItem()
.
However, in practice, you will rarely use these ways of creating and populating
a tuple or list. There's a generic function, Py_BuildValue()
, that can
create most common objects from C values, directed by a format string.
For example, the above two blocks of code could be replaced by the following
(which also takes care of the error checking):
PyObject *tuple, *list;
tuple = Py_BuildValue("(iis)", 1, 2, "three");
list = Py_BuildValue("[iis]", 1, 2, "three");
It is much more common to use PyObject_SetItem()
and friends with items
whose references you are only borrowing, like arguments that were passed in to
the function you are writing. In that case, their behaviour regarding reference
counts is much saner, since you don't have to increment a reference count so you
can give a reference away ("have it be stolen"). For example, this function
sets all items of a list (actually, any mutable sequence) to a given item:
int
set_all(PyObject *target, PyObject *item)
{
Py_ssize_t i, n;
n = PyObject_Length(target);
if (n < 0)
return -1;
for (i = 0; i < n; i++) {
PyObject *index = PyLong_FromSsize_t(i);
if (!index)
return -1;
if (PyObject_SetItem(target, index, item) < 0) {
Py_DECREF(index);
return -1;
}
Py_DECREF(index);
}
return 0;
}
The situation is slightly different for function return values. While passing
a reference to most functions does not change your ownership responsibilities
for that reference, many functions that return a reference to an object give
you ownership of the reference. The reason is simple: in many cases, the
returned object is created on the fly, and the reference you get is the only
reference to the object. Therefore, the generic functions that return object
references, like PyObject_GetItem()
and PySequence_GetItem()
,
always return a new reference (the caller becomes the owner of the reference).
It is important to realize that whether you own a reference returned by a
function depends on which function you call only --- the plumage (the type of
the object passed as an argument to the function) doesn't enter into it!
Thus, if you extract an item from a list using PyList_GetItem()
, you
don't own the reference --- but if you obtain the same item from the same list
using PySequence_GetItem()
(which happens to take exactly the same
arguments), you do own a reference to the returned object.
Here is an example of how you could write a function that computes the sum of
the items in a list of integers; once using PyList_GetItem()
, and once
using PySequence_GetItem()
.
long
sum_list(PyObject *list)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PyList_Size(list);
if (n < 0)
return -1; /* Not a list */
for (i = 0; i < n; i++) {
item = PyList_GetItem(list, i); /* Can't fail */
if (!PyLong_Check(item)) continue; /* Skip non-integers */
value = PyLong_AsLong(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
return total;
}
long
sum_sequence(PyObject *sequence)
{
Py_ssize_t i, n;
long total = 0, value;
PyObject *item;
n = PySequence_Length(sequence);
if (n < 0)
return -1; /* Has no length */
for (i = 0; i < n; i++) {
item = PySequence_GetItem(sequence, i);
if (item == NULL)
return -1; /* Not a sequence, or other failure */
if (PyLong_Check(item)) {
value = PyLong_AsLong(item);
Py_DECREF(item);
if (value == -1 && PyErr_Occurred())
/* Integer too big to fit in a C long, bail out */
return -1;
total += value;
}
else {
Py_DECREF(item); /* Discard reference ownership */
}
}
return total;
}
類型?
There are few other data types that play a significant role in the Python/C API; most are simple C types such as int, long, double and char*. A few structure types are used to describe static tables used to list the functions exported by a module or the data attributes of a new object type, and another is used to describe the value of a complex number. These will be discussed together with the functions that use them.
-
type Py_ssize_t?
- Part of the Stable ABI.
A signed integral type such that
sizeof(Py_ssize_t) == sizeof(size_t)
. C99 doesn't define such a thing directly (size_t is an unsigned integral type). See PEP 353 for details.PY_SSIZE_T_MAX
is the largest positive value of typePy_ssize_t
.
異常?
Python程序員只需要處理特定需要處理的錯誤異常;未處理的異常會自動傳遞給調(diào)用者,然后傳遞給調(diào)用者的調(diào)用者,依此類推,直到他們到達(dá)頂級解釋器,在那里將它們報(bào)告給用戶并伴隨堆?;厮?。
For C programmers, however, error checking always has to be explicit. All
functions in the Python/C API can raise exceptions, unless an explicit claim is
made otherwise in a function's documentation. In general, when a function
encounters an error, it sets an exception, discards any object references that
it owns, and returns an error indicator. If not documented otherwise, this
indicator is either NULL
or -1
, depending on the function's return type.
A few functions return a Boolean true/false result, with false indicating an
error. Very few functions return no explicit error indicator or have an
ambiguous return value, and require explicit testing for errors with
PyErr_Occurred()
. These exceptions are always explicitly documented.
Exception state is maintained in per-thread storage (this is equivalent to
using global storage in an unthreaded application). A thread can be in one of
two states: an exception has occurred, or not. The function
PyErr_Occurred()
can be used to check for this: it returns a borrowed
reference to the exception type object when an exception has occurred, and
NULL
otherwise. There are a number of functions to set the exception state:
PyErr_SetString()
is the most common (though not the most general)
function to set the exception state, and PyErr_Clear()
clears the
exception state.
The full exception state consists of three objects (all of which can be
NULL
): the exception type, the corresponding exception value, and the
traceback. These have the same meanings as the Python result of
sys.exc_info()
; however, they are not the same: the Python objects represent
the last exception being handled by a Python try
...
except
statement, while the C level exception state only exists while
an exception is being passed on between C functions until it reaches the Python
bytecode interpreter's main loop, which takes care of transferring it to
sys.exc_info()
and friends.
Note that starting with Python 1.5, the preferred, thread-safe way to access the
exception state from Python code is to call the function sys.exc_info()
,
which returns the per-thread exception state for Python code. Also, the
semantics of both ways to access the exception state have changed so that a
function which catches an exception will save and restore its thread's exception
state so as to preserve the exception state of its caller. This prevents common
bugs in exception handling code caused by an innocent-looking function
overwriting the exception being handled; it also reduces the often unwanted
lifetime extension for objects that are referenced by the stack frames in the
traceback.
As a general principle, a function that calls another function to perform some task should check whether the called function raised an exception, and if so, pass the exception state on to its caller. It should discard any object references that it owns, and return an error indicator, but it should not set another exception --- that would overwrite the exception that was just raised, and lose important information about the exact cause of the error.
A simple example of detecting exceptions and passing them on is shown in the
sum_sequence()
example above. It so happens that this example doesn't
need to clean up any owned references when it detects an error. The following
example function shows some error cleanup. First, to remind you why you like
Python, we show the equivalent Python code:
def incr_item(dict, key):
try:
item = dict[key]
except KeyError:
item = 0
dict[key] = item + 1
下面是對應(yīng)的閃耀榮光的 C 代碼:
int
incr_item(PyObject *dict, PyObject *key)
{
/* Objects all initialized to NULL for Py_XDECREF */
PyObject *item = NULL, *const_one = NULL, *incremented_item = NULL;
int rv = -1; /* Return value initialized to -1 (failure) */
item = PyObject_GetItem(dict, key);
if (item == NULL) {
/* Handle KeyError only: */
if (!PyErr_ExceptionMatches(PyExc_KeyError))
goto error;
/* Clear the error and use zero: */
PyErr_Clear();
item = PyLong_FromLong(0L);
if (item == NULL)
goto error;
}
const_one = PyLong_FromLong(1L);
if (const_one == NULL)
goto error;
incremented_item = PyNumber_Add(item, const_one);
if (incremented_item == NULL)
goto error;
if (PyObject_SetItem(dict, key, incremented_item) < 0)
goto error;
rv = 0; /* Success */
/* Continue with cleanup code */
error:
/* Cleanup code, shared by success and failure path */
/* Use Py_XDECREF() to ignore NULL references */
Py_XDECREF(item);
Py_XDECREF(const_one);
Py_XDECREF(incremented_item);
return rv; /* -1 for error, 0 for success */
}
This example represents an endorsed use of the goto
statement in C!
It illustrates the use of PyErr_ExceptionMatches()
and
PyErr_Clear()
to handle specific exceptions, and the use of
Py_XDECREF()
to dispose of owned references that may be NULL
(note the
'X'
in the name; Py_DECREF()
would crash when confronted with a
NULL
reference). It is important that the variables used to hold owned
references are initialized to NULL
for this to work; likewise, the proposed
return value is initialized to -1
(failure) and only set to success after
the final call made is successful.
嵌入Python?
The one important task that only embedders (as opposed to extension writers) of the Python interpreter have to worry about is the initialization, and possibly the finalization, of the Python interpreter. Most functionality of the interpreter can only be used after the interpreter has been initialized.
The basic initialization function is Py_Initialize()
. This initializes
the table of loaded modules, and creates the fundamental modules
builtins
, __main__
, and sys
. It also
initializes the module search path (sys.path
).
Py_Initialize()
does not set the "script argument list" (sys.argv
).
If this variable is needed by Python code that will be executed later, setting
PyConfig.argv
and PyConfig.parse_argv
must be set: see
Python Initialization Configuration.
On most systems (in particular, on Unix and Windows, although the details are
slightly different), Py_Initialize()
calculates the module search path
based upon its best guess for the location of the standard Python interpreter
executable, assuming that the Python library is found in a fixed location
relative to the Python interpreter executable. In particular, it looks for a
directory named lib/pythonX.Y
relative to the parent directory
where the executable named python
is found on the shell command search
path (the environment variable PATH
).
For instance, if the Python executable is found in
/usr/local/bin/python
, it will assume that the libraries are in
/usr/local/lib/pythonX.Y
. (In fact, this particular path is also
the "fallback" location, used when no executable file named python
is
found along PATH
.) The user can override this behavior by setting the
environment variable PYTHONHOME
, or insert additional directories in
front of the standard path by setting PYTHONPATH
.
The embedding application can steer the search by calling
Py_SetProgramName(file)
before calling Py_Initialize()
. Note that
PYTHONHOME
still overrides this and PYTHONPATH
is still
inserted in front of the standard path. An application that requires total
control has to provide its own implementation of Py_GetPath()
,
Py_GetPrefix()
, Py_GetExecPrefix()
, and
Py_GetProgramFullPath()
(all defined in Modules/getpath.c
).
Sometimes, it is desirable to "uninitialize" Python. For instance, the
application may want to start over (make another call to
Py_Initialize()
) or the application is simply done with its use of
Python and wants to free memory allocated by Python. This can be accomplished
by calling Py_FinalizeEx()
. The function Py_IsInitialized()
returns
true if Python is currently in the initialized state. More information about
these functions is given in a later chapter. Notice that Py_FinalizeEx()
does not free all memory allocated by the Python interpreter, e.g. memory
allocated by extension modules currently cannot be released.
調(diào)試構(gòu)建?
Python can be built with several macros to enable extra checks of the interpreter and extension modules. These checks tend to add a large amount of overhead to the runtime so they are not enabled by default.
A full list of the various types of debugging builds is in the file
Misc/SpecialBuilds.txt
in the Python source distribution. Builds are
available that support tracing of reference counts, debugging the memory
allocator, or low-level profiling of the main interpreter loop. Only the most
frequently-used builds will be described in the remainder of this section.
Compiling the interpreter with the Py_DEBUG
macro defined produces
what is generally meant by a debug build of Python.
Py_DEBUG
is enabled in the Unix build by adding
--with-pydebug
to the ./configure
command.
It is also implied by the presence of the
not-Python-specific _DEBUG
macro. When Py_DEBUG
is enabled
in the Unix build, compiler optimization is disabled.
In addition to the reference count debugging described below, extra checks are performed, see Python Debug Build.
Defining Py_TRACE_REFS
enables reference tracing
(see the configure --with-trace-refs option
).
When defined, a circular doubly linked list of active objects is maintained by adding two extra
fields to every PyObject
. Total allocations are tracked as well. Upon
exit, all existing references are printed. (In interactive mode this happens
after every statement run by the interpreter.)
有關(guān)更多詳細(xì)信息,請參閱Python源代碼中的 Misc/SpecialBuilds.txt
。